Characterizing Tissue Remodeling and Mechanical Heterogeneity in Cerebral Aneurysms

J Vasc Res. 2022;59(1):34-42. doi: 10.1159/000519694. Epub 2021 Nov 10.

Abstract

Accurately assessing the complex tissue mechanics of cerebral aneurysms (CAs) is critical for elucidating how CAs grow and whether that growth will lead to rupture. The factors that have been implicated in CA progression - blood flow dynamics, immune infiltration, and extracellular matrix remodeling - all occur heterogeneously throughout the CA. Thus, it stands to reason that the mechanical properties of CAs are also spatially heterogeneous. Here, we present a new method for characterizing the mechanical heterogeneity of human CAs using generalized anisotropic inverse mechanics, which uses biaxial stretching experiments and inverse analyses to determine the local Kelvin moduli and principal alignments within the tissue. Using this approach, we find that there is significant mechanical heterogeneity within a single acquired human CA. These results were confirmed using second harmonic generation imaging of the CA's fiber architecture and a correlation was observed. This approach provides a single-step method for determining the complex heterogeneous mechanics of CAs, which has important implications for future identification of metrics that can improve accuracy in prediction risk of rupture.

Keywords: Aneurysms; Biomechanics; Heterogeneity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aortic Rupture / pathology
  • Aortic Rupture / physiopathology
  • Biomechanical Phenomena
  • Cerebral Angiography
  • Cerebral Arteries / diagnostic imaging
  • Cerebral Arteries / pathology*
  • Cerebral Arteries / physiopathology
  • Cerebrovascular Circulation
  • Computed Tomography Angiography
  • Dilatation, Pathologic
  • Extracellular Matrix / pathology*
  • Fibrillar Collagens
  • Humans
  • Intracranial Aneurysm / diagnostic imaging
  • Intracranial Aneurysm / pathology*
  • Intracranial Aneurysm / physiopathology
  • Magnetic Resonance Angiography
  • Models, Cardiovascular*
  • Stress, Mechanical

Substances

  • Fibrillar Collagens