Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer

Cell Death Dis. 2021 Nov 13;12(11):1079. doi: 10.1038/s41419-021-04367-3.

Abstract

Cetuximab is approved for the treatment of metastatic colorectal cancer (mCRC) with RAS wild-type. Nevertheless, the prognosis remains poor and the effectiveness of cetuximab is limited in KRAS mutant mCRC. Recently, emerging evidence has shown that ferroptosis, a newly discovered form of nonapoptotic cell death, is closely related to KRAS mutant cells. Here, we further investigated whether cetuximab-mediated regulation of p38/Nrf2/HO-1 promotes RSL3-induced ferroptosis and plays a pivotal role in overcoming drug resistance in KRAS mutant colorectal cancer (CRC). In our research, we used two KRAS mutant CRC cell lines, HCT116 and DLD-1, as models of intrinsic resistance to cetuximab. The viability of cells treated with the combination of RSL3 and cetuximab was assessed by the CCK-8 and colony formation assays. The effective of cetuximab to promote RSL3-induced ferroptosis was investigated by evaluating lipid reactive oxygen species accumulation and the expression of the malondialdehyde and the intracellular iron assay. Cetuximab therapy contributed to regulating the p38/Nrf2/HO-1 axis, as determined by western blotting and transfection with small interfering RNAs. Cetuximab promoted RSL3-induced ferroptosis by inhibiting the Nrf2/HO-1 in KRAS mutant CRC cells, and this was further demonstrated in a xenograft nude mouse model. Our work reveals that cetuximab enhances the cytotoxic effect of RSL3 on KRAS mutant CRC cells and that cetuximab enhances RSL3-induced ferroptosis by inhibiting the Nrf2/HO-1 axis through the activation of p38 MAPK.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents, Immunological / pharmacology
  • Antineoplastic Agents, Immunological / therapeutic use*
  • Carbolines / pharmacology
  • Carbolines / therapeutic use*
  • Cell Line, Tumor
  • Cetuximab / pharmacology
  • Cetuximab / therapeutic use*
  • Colorectal Neoplasms / drug therapy*
  • Ferroptosis / drug effects*
  • Humans
  • Mice
  • Mice, Nude
  • NF-E2-Related Factor 2 / metabolism*
  • Proto-Oncogene Proteins p21(ras) / metabolism*
  • Signal Transduction
  • Transfection
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents, Immunological
  • Carbolines
  • NF-E2-Related Factor 2
  • RSL3 compound
  • Proto-Oncogene Proteins p21(ras)
  • Cetuximab