Machine learning predictive models for acute pancreatitis: A systematic review

Int J Med Inform. 2022 Jan:157:104641. doi: 10.1016/j.ijmedinf.2021.104641. Epub 2021 Nov 10.

Abstract

Introduction: Acute pancreatitis (AP) is a common clinical pancreatic disease. Patients with different severity levels have different clinical outcomes. With the advantages of algorithms, machine learning (ML) has gradually emerged in the field of disease prediction, assisting doctors in decision-making.

Methods: A systematic review was conducted using the PubMed, Web of Science, Scopus, and Embase databases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Publication time was limited from inception to 29 May 2021. Studies that have used ML to establish predictive tools for AP were eligible for inclusion. Quality assessment of the included studies was conducted in accordance with the IJMEDI checklist.

Results: In this systematic review, 24 of 2,913 articles, with a total of 8,327 patients and 47 models, were included. The studies could be divided into five categories: 10 studies (42%) reported severity prediction; 10 studies (42%), complication prediction; 3 studies (13%), mortality prediction; 2 studies (8%), recurrence prediction; and 2 studies (8%), surgery timing prediction. ML showed great accuracy in several prediction tasks. However, most of the included studies were retrospective in nature, conducted at a single centre, based on database data, and lacked external validation. According to the IJMEDI checklist and our scoring criteria, two studies were considered to be of high quality. Most studies had an obvious bias in the quality of data preparation, validation, and deployment dimensions.

Conclusion: In the prediction tasks for AP, ML has shown great potential in assisting decision-making. However, the existing studies still have some deficiencies in the process of model construction. Future studies need to optimize the deficiencies and further evaluate the comparability of the ML systems and model performance, so as to consequently develop high-quality ML-based models that can be used in clinical practice.

Keywords: Acute pancreatitis; Machine learning; Prediction; Systematic review.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review
  • Systematic Review

MeSH terms

  • Acute Disease
  • Algorithms
  • Humans
  • Machine Learning
  • Pancreatitis* / diagnosis
  • Retrospective Studies