Astrocytes are an abundant subgroup of cells in the central nervous system (CNS) that play a critical role in controlling neuronal circuits involved in emotion, learning, and memory. In clinical cases, multiple chronic brain diseases may cause psychosocial and cognitive impairment, such as depression and Alzheimer's disease (AD). For years, complex pathological conditions driven by depression and AD have been widely perceived to contribute to a high risk of disability, resulting in gradual loss of self-care ability, lower life qualities, and vast burden on human society. Interestingly, correlational research on depression and AD has shown that depression might be a prodrome of progressive degenerative neurological disease. As a kind of multifunctional glial cell in the CNS, astrocytes maintain physiological function via supporting neuronal cells, modulating pathologic niche, and regulating energy metabolism. Mounting evidence has shown that astrocytic dysfunction is involved in the progression of depression and AD. We herein review the current findings on the roles and mechanisms of astrocytes in the development of depression and AD, with an implication of potential therapeutic avenue for these diseases by targeting astrocytes.
Keywords: Alzheimer’s disease; astrocytes; depression; mechanisms; roles.
© 2021. The Author(s).