Purpose: To assess whether octree representation and octree-based convolutional neural networks (CNNs) improve segmentation accuracy of three-dimensional images.
Materials and methods: Cardiac CT angiographic examinations from 100 patients (mean age, 67 years ± 17 [standard deviation]; 60 men) performed between June 2012 and June 2018 with semantic segmentations of the left ventricular (LV) and left atrial (LA) blood pools at the end-diastolic and end-systolic cardiac phases were retrospectively evaluated. Image quality (root mean square error [RMSE]) and segmentation fidelity (global Dice and border Dice coefficients) metrics of the octree representation were compared with spatial downsampling for a range of memory footprints. Fivefold cross-validation was used to train an octree-based CNN and CNNs with spatial downsampling at four levels of image compression or spatial downsampling. The semantic segmentation performance of octree-based CNN (OctNet) was compared with the performance of U-Nets with spatial downsampling.
Results: Octrees provided high image and segmentation fidelity (median RMSE, 1.34 HU; LV Dice coefficient, 0.970; LV border Dice coefficient, 0.843) with a reduced memory footprint (87.5% reduction). Spatial downsampling to the same memory footprint had lower data fidelity (median RMSE, 12.96 HU; LV Dice coefficient, 0.852; LV border Dice coefficient, 0.310). OctNet segmentation improved the border segmentation Dice coefficient (LV, 0.612; LA, 0.636) compared with the highest performance among U-Nets with spatial downsampling (Dice coefficients: LV, 0.579; LA, 0.592).
Conclusion: Octree-based representations can reduce the memory footprint and improve segmentation border accuracy.Keywords CT, Cardiac, Segmentation, Supervised Learning, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms© RSNA, 2021.
Keywords: CT; Cardiac; Convolutional Neural Network (CNN); Deep Learning Algorithms; Machine Learning Algorithms; Segmentation; Supervised Learning.
2021 by the Radiological Society of North America, Inc.