Cardioprotective Effects of Palmitoleic Acid (C16:1n7) in a Mouse Model of Catecholamine-Induced Cardiac Damage Are Mediated by PPAR Activation

Int J Mol Sci. 2021 Nov 24;22(23):12695. doi: 10.3390/ijms222312695.

Abstract

Palmitoleic acid (C16:1n7) has been identified as a regulator of physiological cardiac hypertrophy. In the present study, we aimed to investigate the molecular pathways involved in C16:1n7 responses in primary murine cardiomyocytes (PCM) and a mouse model of isoproterenol (ISO)-induced cardiac damage. PCMs were stimulated with C16:1n7 or a vehicle. Afterwards, RNA sequencing was performed using an Illumina HiSeq sequencer. Confirmatory analysis was performed in PCMs and HL-1 cardiomyocytes. For an in vivo study, 129 sv mice were orally treated with a vehicle or C16:1n7 for 22 days. After 5 days of pre-treatment, the mice were injected with ISO (25 mg/kg/d s. c.) for 4 consecutive days. Cardiac phenotyping was performed using echocardiography. In total, 129 genes were differentially expressed in PCMs stimulated with C16:1n7, including Angiopoietin-like factor 4 (Angptl4) and Pyruvate Dehydrogenase Kinase 4 (Pdk4). Both Angptl4 and Pdk4 are proxisome proliferator-activated receptor α/δ (PPARα/δ) target genes. Our in vivo results indicated cardioprotective and anti-fibrotic effects of C16:1n7 application in mice. This was associated with the C16:1n7-dependent regulation of the cardiac PPAR-specific signaling pathways. In conclusion, our experiments demonstrated that C16:1n7 might have protective effects on cardiac fibrosis and inflammation. Our study may help to develop future lipid-based therapies for catecholamine-induced cardiac damage.

Keywords: PPAR; cardiac damage; cardioprotective effects; catecholamine; lipokine; palmitoleic acid (C16:1n7).

MeSH terms

  • Animals
  • Cardiomegaly / chemically induced
  • Cardiomegaly / drug therapy*
  • Cardiomegaly / metabolism
  • Cardiomegaly / pathology
  • Cardiotonic Agents / pharmacology*
  • Catecholamines / toxicity*
  • Fatty Acids, Monounsaturated / pharmacology*
  • Gene Expression Regulation / drug effects*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Myocytes, Cardiac / drug effects
  • Myocytes, Cardiac / metabolism
  • Myocytes, Cardiac / pathology
  • PPAR alpha / genetics
  • PPAR alpha / metabolism*
  • PPAR delta / genetics
  • PPAR delta / metabolism*

Substances

  • Cardiotonic Agents
  • Catecholamines
  • Fatty Acids, Monounsaturated
  • PPAR alpha
  • PPAR delta
  • palmitoleic acid