Research has shown that transcutaneous cervical vagus nerve stimulation (tcVNS) yields downstream changes in peripheral physiology in individuals afflicted with posttraumatic stress disorder (PTSD). While the cardiovascular effects of tcVNS have been studied broadly in prior work, the specific effects of tcVNS on the reciprocal of the pulse transit time (1/PTT) remain unknown. By quantifying detectable effects, tcVNS can be further evaluated as a counterbalance to sympathetic hyperactivity during distress - specifically, we hypothesized that tcVNS would inhibit 1/PTT responses to traumatic stress. To investigate this, the electrocardiogram (ECG), photoplethysmogram (PPG), and seismocardiogram (SCG), were simultaneously measured from 24 human subjects suffering from PTSD. Implementing state-of-the-art signal quality assessment algorithms, relative changes in the pulse arrival time (PAT) and the pre-ejection period (PEP) were estimated solely from signal segments of sufficient quality. Thereby computing relative changes in 1/PTT, we find that tcVNS results in reduced 1/PTT responses to traumatic stress and the first minute of stimulation, compared to a sham control (corrected p < 0.05). This suggests that tcVNS induces inhibitory effects on blood pressure (BP) and/or vasoconstriction, given the established relationship between 1/PTT and these parameters.Clinical Relevance- Relative changes in 1/PTT are induced by varying vasomotor tone and/or BP - it has therefore piqued considerable interest as a potential surrogate of continuous BP. Studying its responses to tcVNS thus furthers understanding of tcVNS-induced cardiovascular modulation. The positive effects detailed herein suggest a potential role for tcVNS in the long-term management of PTSD.