Circulating microRNAs in Symptomatic and Asymptomatic Carotid Stenosis

Front Neurol. 2021 Nov 24:12:755827. doi: 10.3389/fneur.2021.755827. eCollection 2021.

Abstract

Background: Specific microRNAs (miRs) have been implicated in the pathophysiology of atherosclerosis and may represent interesting diagnostic and therapeutic targets in carotid stenosis. We hypothesized that the levels of specific circulating miRs are altered in patients with symptomatic carotid stenosis (sCS) in comparison to those in patients with asymptomatic carotid stenosis (aCS) planned to undergo carotid endarterectomy (CEA). We also studied whether miR levels are associated with plaque vulnerability and stability over time after CEA. Methods: Circulating levels of vascular-enriched miR-92a, miR-126, miR-143, miR-145, miR-155, miR-210, miR-221, miR-222, and miR-342-3p were determined in 21 patients with sCS and 23 patients with aCS before CEA and at a 90-day follow-up. Transcranial Doppler ultrasound for detection of microembolic signals (MES) in the ipsilateral middle cerebral artery was performed prior to CEA. Carotid plaques were histologically analyzed. Results: Mean levels of miRs were not considerably different between groups and were only marginally higher in sCS than aCS concerning miR-92a, miR-210, miR-145, and miR-143 with the best evidence concerning miR-92a. After adjustment for vascular risk factors and statin pre-treatment, the effect sizes remained essentially unchanged. At follow-up, however, these modest differences remained uncorroborated. There were no relevant associations between miR-levels and MES or histological plaque vulnerability features. Conclusions: This study does not provide evidence for strong associations between specific circulating miRs and symptomatic state in a collective of comprehensively characterized patients with carotid stenosis. Further work is needed to elucidate the role of circulating miRs as targets in advanced carotid atherosclerosis.

Keywords: atherosclerosis; biomarker; carotid stenosis; microRNA; stroke.