Purpose: To noninvasively evaluate the use of intratumoral and peritumoral regions from full-field digital mammography (DM), digital breast tomosynthesis (DBT), dynamic contrast-enhanced (DCE), and diffusion-weighted (DW) magnetic resonance imaging (MRI) images separately and combined to predict the Ki-67 level based on radiomics.
Procedures: A total of 209 patients with pathologically confirmed breast cancer were consecutively enrolled from September 2017 to March 2021, who underwent DM, DBT, DCE-MRI, and DW MRI scans. Radiomics features were calculated from intratumoral and peritumoral regions in each modality and selected with the least absolute shrinkage and selection operator (LASSO) regression. Radiomics signatures (RSs) were built based on intratumoral, peritumoral, and combined intra- and peritumoral regions. The prediction performance of the RSs was evaluated using the area under the receiver operating characteristic curve (AUC), specificity, and sensitivity as comparison metrics. A nomogram was constructed by integrating the multi-model RS and important clinical predictors and assessed by calibration and decision curve analysis.
Results: The combined intra- and peritumoral RSs improved the AUC compared with intra- or peritumoral RSs in each modality. The DCE plus DW MRI yielded higher AUC and specificity but lower sensitivity compared with the DM plus DBT. The nomogram incorporating the multi-model RS, age, and lymph node metastasis status achieved the best prediction performance in the training (AUC, nomogram vs. fusion RS vs. clinical model, 0.922 vs. 0.917 vs. 0.672) and validation (AUCs, nomogram vs. fusion RS vs. clinical model, 0.866 vs. 0.838 vs. 0.661) cohorts. DCA analysis confirmed the potential clinical utility of the nomogram.
Conclusions: Peritumoral regions can provide complementary information to intratumoral regions in mammography and MRI for the prediction of Ki-67 levels. The MRI performed better than mammography in terms of AUC and specificity but weaker in sensitivity. The nomogram has a predictive advantage over each modality and could be a potential tool for predicting Ki-67 levels in breast cancer.
Keywords: Breast; Ki-67 level; MRI; Mammography; Radiomics.
© 2021. World Molecular Imaging Society.