Analysis of Excess Mortality Data at Different Altitudes During the COVID-19 Outbreak in Ecuador

High Alt Med Biol. 2021 Dec;22(4):406-416. doi: 10.1089/ham.2021.0070.

Abstract

Ortiz-Prado, Esteban, Raul Patricio Fernandez Naranjo, Eduardo Vasconez, Katherine Simbaña-Rivera, Trigomar Correa-Sancho, Alex Lister, Manuel Calvopiña, and Ginés Viscor. Analysis of excess mortality data at different altitudes during the COVID-19 outbreak in Ecuador. High Alt Med Biol. 22:406-416, 2021. Background: It has been speculated that living at high altitude confers some risk reduction in terms of SARS-CoV-2 infection, reduced transmissibility, and arguable lower COVID-19-related mortality. Objective: We aim to determine the number of excess deaths reported in Ecuador during the first year of the COVID-19 pandemic in relation to different altitude categories among 221 cantons in Ecuador, ranging from sea level to 4,300 m above. Methods: A descriptive ecological country-wide analysis of the excess mortality in Ecuador was performed since March 1, 2020, to March 1, 2021. Every canton was categorized as lower (for altitudes 2,500 m or less) or higher (for altitudes >2,500 m) in a first broad classification, as well as in two different classifications: The one proposed by Imray et al. in 2011 (low altitude <1,500 m, moderate altitude 1,500-2,500 m, high altitude 2,500-3,500 m, or very high altitude 3,500-5,500 m) and the one proposed by Bärtsch et al. in 2008 (near sea level 0-500 m, low altitude 500-2,000 m, moderate altitude 2,000-3,000 m, high altitude 3,000-5,500 m, and extreme altitude 5,500 m). A Poisson fitting analysis was used to identify trends on officially recorded all-caused deaths and those attributed to COVID-19. Results: In Ecuador, at least 120,573 deaths were recorded during the first year of the pandemic, from which 42,453 were catalogued as excessive when compared with the past 3 years of averages (2017-2019). The mortality rate at the lower altitude was 301/100,000 people, in comparison to 242/100,000 inhabitants in elevated cantons. Considering the four elevation categories, the highest excess deaths came from towns located at low altitude (324/100,000), in contrast to the moderate altitude (171/100,000), high-altitude (249/100,000), and very high-altitude (153/100,000) groups. Conclusions: This is the first report on COVID-19 excess mortality in a high-altitude range from 0 to 4,300 m above sea level. We found that absolute COVID-19-related excess mortality is lower both in time and in proportion in the cantons located at high and very high altitude when compared with those cantons located at low altitude.

Keywords: COVID-19; Ecuador; excess deaths; high altitude; hypoxia; statistical bootstrapping.

MeSH terms

  • Altitude
  • COVID-19*
  • Ecuador / epidemiology
  • Humans
  • Pandemics
  • SARS-CoV-2