Multiple omics study identifies an interspecies conserved driver for nonalcoholic steatohepatitis

Sci Transl Med. 2021 Dec 15;13(624):eabg8117. doi: 10.1126/scitranslmed.abg8117. Epub 2021 Dec 15.

Abstract

Lipotoxicity is a recognized pathological trigger and accelerator of nonalcoholic steatohepatitis (NASH). However, the molecular basis of lipotoxicity-induced NASH remains elusive. Here, we systematically mapped the changes in hepatic transcriptomic landscapes in response to lipotoxic insults across multiple species. Conserved and robust activation of the arachidonic acid pathway, in particular the arachidonate 12-lipoxygenase (ALOX12) gene, was closely correlated with NASH severity in humans, macaques with spontaneously developed NASH, as well as swine and mouse dietary NASH models. Using gain- and loss-of-function studies, we found that ALOX12 markedly exacerbated NASH in both mice and Bama pig models. ALOX12 was shown to induce NASH by directly targeting acetyl-CoA carboxylase 1 (ACC1) via a lysosomal degradation mechanism. Overall, our findings reveal a key molecular driver of NASH pathogenesis and suggest that ALOX12-ACC1 interaction may be a therapeutic target in NASH.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Disease Models, Animal
  • Liver / metabolism
  • Liver Cirrhosis / pathology
  • Mice
  • Mice, Inbred C57BL
  • Non-alcoholic Fatty Liver Disease* / drug therapy
  • Swine