Current leakage between channels in microelectrode arrays is a sign of device failure and can lead to shorting of neural signals. The purpose of this project is to detect crosstalk between 32 channels of electrodes. We designed an embedded crosstalk detection system that can stimulate each electrode individually with a constant-current pulse and record voltage transients of the stimulated and adjacent electrodes to generate a matrix of crosstalk values. Charge injection in a phosphate buffered saline solution was used to check the condition of each electrode. A semi-wet condition was then used to determine the percent crosstalk between the channels. The analysis showed that there was minimal crosstalk between the electrodes, except for a known physical defect on the probe. The measurement technique enabled by the electronics circuit has the potential to be used in functional testing and screening of implantable devices.