Objective: Neonates with Congenital Heart Disease (CHD) have structural delays in brain development. To evaluate whether functional brain maturation and sleep-wake physiology is also disturbed, the Functional Brain Age (FBA) and sleep organisation on EEG during the neonatal period is investigated.
Methods: We compared 15 neonates with CHD who underwent multichannel EEG with healthy term newborns of the same postmenstrual age, including subgroup analysis for d-Transposition of the Great Arteries (d-TGA) (n = 8). To estimate FBA, a prediction tool using quantitative EEG features as input, was applied. Second, the EEG was automatically classified into the 4 neonatal sleep stages. Neonates with CHD underwent neurodevelopmental testing using the Bayley Scale of Infant Development-III at 24 months.
Results: Preoperatively, the FBA was delayed in CHD infants and more so in d-TGA infants. The FBA was positively correlated with motor scores. Sleep organisation was significantly altered in neonates with CHD. The duration of the sleep cycle and the proportion of Active Sleep Stage 1 was decreased, again more marked in the d-TGA infants. Neonates with d-TGA spent less time in High Voltage Slow Wave Sleep and more in Tracé Alternant compared to healthy terms. Both FBA and sleep organisation normalised postoperatively. The duration of High Voltage Slow Wave Sleep remained positively correlated with motor scores in d-TGA infants.
Interpretation: Altered early brain function and sleep is present in neonates with CHD. These results are intruiging, as inefficient neonatal sleep has been linked with adverse long-term outcome. Identifying how these rapid alterations in brain function are mitigated through improvements in cerebral oxygenation, surgery, drugs and nutrition may have relevance for clinical practice and outcome.
Copyright © 2021. Published by Elsevier Ltd.