Co-amorphous supersaturated drug delivery systems are emerging as an alternative strategy to improve the water solubility of BCS II drugs. Typically, the supersaturation and stability of co-amorphous systems largely depend on the type of employed co-former. This study aims to assess the potential for active metabolites of drugs as co-former in drug-drug co-amorphous formulations. Toltrazuril (Tol) was chosen as the model drug, to which ponazuril (Pon) was added as co-former. Considering the importance of intermolecular interactions in co-amorphous systems, we performed highlighted investigations including molecular dynamics simulation and quantum mechanics calculations. The results indicated that Tol and Pon molecules were connected by N-H···O = C hydrogen bonds in the form of a complementary pairing of amide groups. Further, the solubility/dissolution and solid-state stability of the co-amorphous system were investigated. We found that co-amorphous Tol-Pon was stable for at least one month at 40 °C/75% RH, while amorphous materials underwent recrystallization within 10 days. Moreover, both drugs in the co-amorphous system exhibited enhanced "spring parachute effect" during the dissolution process. This could be attributed to the noticeably increased solid-state stabilization as well as inhibition of Pon on the crystallization of Tol from a supersaturated state. In general, our study provides some useful information and molecular insights to guide the development of drug-active metabolite-based co-amorphous formulations.
Keywords: Co-amorphization; Dissolution; Hydrogen bonding; Molecular simulation; Stability; Toltrazuril.
Copyright © 2022 Elsevier B.V. All rights reserved.