Wild-type p53 is a stress-responsive transcription factor and potent tumor suppressor. P53 activates or represses genes involved in cell cycle progression or apoptosis in order to arrest the cell cycle or induce cell death. Transcription repression by p53 is indirect and requires repressive members of the RB-family (RB1, RBL1, RBL2) and formation of repressor complexes of RB1-E2F and RBL1/RBL2-DREAM. Many aurora kinase A/B (AURKA/B) pathway genes are repressed in a p53-DREAM-dependent manner. We found heightened expression of RBL2 and reduced expression of AURKA/B pathway genes is associated with improved outcomes in p53 wild-type but not p53 mutant non-small cell lung cancer (NSCLC) patients. Knockdown of p53, RBL2, or the DREAM component LIN37 increased AURKA/B pathway gene expression and reduced paclitaxel and radiation toxicity in NSCLC cells. In contrast, pharmacologic inhibition of AURKA/B or knockdown of AURKA/B pathway components increased paclitaxel and IR sensitivity. The results support a model in which p53-RBL2-DREAM-mediated repression of the AURKA/B pathway contributes to tumor suppression, improved tumor therapy responses, and better outcomes in p53 wild-type NSCLCs.
© 2022. The Author(s).