Diabetes is closely related to the occurrence of endometrial cancer (EC) and its poor prognosis. However, there is no effective clinical treatment for EC patients with diabetes (patientEC+/dia+ ). To explore new therapeutic targets, Ishikawa is cultured with high glucose (IshikawaHG ) mimicking hyperglycemia in patientEC+/dia+ . Subsequently, it is discovered that IshikawaHG exhibits glucose metabolic reprogramming characterized by increased glycolysis and decreased oxidative phosphorylation. Further, pyruvate dehydrogenase kinase 1 (PDK1) is identified to promote glycolysis of IshikawaHG by proteomics. Most importantly, JX06, a novel PDK1 inhibitor combined metformin (Met) significantly inhibits IshikawaHG proliferation though IshikawaHG is resistant to Met. Furthermore, a reduction-sensitive biodegradable polymer is adopted to encapsulate JX06 to form nanoparticles (JX06-NPs) for drug delivery. It is found that in vitro JX06-NPs have better inhibitory effect on the growth of IshikawaHG as well as patient-derived EC cells (PDC) than JX06. Additionally, it is found that JX06-NPs can accumulate to the tumor of EC-bearing mouse with diabetes (miceEC+/dia+ ) after intravenous injection, and JX06-NPs combined Met can significantly inhibit tumor growth of miceEC+/dia+ . Taken together, the study demonstrates that the combination of JX06-NPs and Met can target the cancer metabolism plasticity, which significantly inhibits the growth of EC, thereby provides a new adjuvant therapy for patientsEC+/dia+ .
Keywords: PDK1; cell metabolic reprogramming; diabetes; endometrial cancer; high glucose; metformin.
© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.