Thermoelectric Enhancement in Single Organic Radical Molecules

Nano Lett. 2022 Feb 9;22(3):948-953. doi: 10.1021/acs.nanolett.1c03698. Epub 2022 Jan 24.

Abstract

Organic thermoelectric materials have potential for wearable heating, cooling, and energy generation devices at room temperature. For this to be technologically viable, high-conductance (G) and high-Seebeck-coefficient (S) materials are needed. For most semiconductors, the increase in S is accompanied by a decrease in G. Here, using a combined experimental and theoretical investigation, we demonstrate that a simultaneous enhancement of S and G can be achieved in single organic radical molecules, thanks to their intrinsic spin state. A counterintuitive quantum interference (QI) effect is also observed in stable Blatter radical molecules, where constructive QI occurs for a meta-connected radical, leading to further enhancement of thermoelectric properties. Compared to an analogous closed-shell molecule, the power factor is enhanced by more than 1 order of magnitude in radicals. These results open a new avenue for the development of organic thermoelectric materials operating at room temperature.

Keywords: Energy harvesting; organic thermoelectricity; quantum transport; single radical molecules.