Why is it so difficult to study magnetic compass orientation in murine rodents?

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 Jan;208(1):197-212. doi: 10.1007/s00359-021-01532-z. Epub 2022 Jan 30.

Abstract

A magnetic compass sense has been demonstrated in all major classes of vertebrates, as well as in many invertebrates. In mammals, controlled laboratory studies of mice have provided evidence for a robust magnetic compass that is comparable to, or exceeds, the performance of that in other animals. Nevertheless, the vast majority of laboratory studies of spatial behavior and cognition in murine rodents have failed to produce evidence of sensitivity to magnetic cues. Given the central role that a magnetic compass sense plays in the spatial ecology and cognition of non-mammalian vertebrates, and the potential utility that a global/universal reference frame derived from the magnetic field would have in mammals, the question of why responses to magnetic cues have been so difficult to demonstrate reliably is of considerable importance. In this paper, we review evidence that the magnetic compass of murine rodents shares a number of properties with light-dependent compasses in a wide variety of other animals generally believed to be mediated by a radical pair mechanism (RPM) or related quantum process. Consistent with the RPM, we summarize both published and previously unpublished findings suggesting that the murine rodent compass is sensitive to low-level radio frequency (RF) fields. Finally, we argue that the presence of anthropogenic RF fields in laboratory settings, may be an important source of variability in responses of murine rodents to magnetic cues.

Keywords: Low-level RF fields; Magnetic compass; Murine rodents; Radical pair mechanism.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animal Migration
  • Animals
  • Magnetic Fields
  • Magnetics
  • Mice
  • Orientation* / physiology
  • Rodentia
  • Taxis Response*