Metabolic labeling of secreted matrix to investigate cell-material interactions in tissue engineering and mechanobiology

Nat Protoc. 2022 Mar;17(3):618-648. doi: 10.1038/s41596-021-00652-9. Epub 2022 Feb 9.

Abstract

Re-creating features of the native extracellular matrix (ECM) with engineered biomaterials has become a valuable tool to probe the influence of ECM properties on cellular functions (e.g., differentiation) and toward the engineering of tissues. However, characterization of newly secreted (nascent) matrix and turnover, which are important in the context of cells interacting with these biomaterials, has been limited by a lack of tools. We developed a protocol to visualize and quantify the spatiotemporal evolution of newly synthesized and deposited matrix by cells that are either cultured atop (2D) or embedded within (3D) biomaterial systems (e.g., hydrogels, fibrous matrices). This technique relies on the incorporation of a noncanonical amino acid (azidohomoalanine) into proteins as they are synthesized. Deposited nascent ECM components are then visualized with fluorescent cyclooctynes via copper-free cycloaddition for spatiotemporal analysis or modified with cleavable biotin probes for identification. Here we describe the preparation of hyaluronic acid hydrogels through ultraviolet or visible light induced cross-linking for 2D and 3D cell culture, as well as the fluorescent labeling of nascent ECM deposited by cells during culture. We also provide protocols for secondary immunofluorescence of specific ECM components and ImageJ-based ECM quantification methods. Hyaluronic acid polymer synthesis takes 2 weeks to complete, and hydrogel formation for 2D or 3D cell culture is performed in 2-3 h. Lastly, we detail the identification of nascent proteins, including enrichment, preparation and analysis with mass spectrometry, which can be completed in 10 d.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Biocompatible Materials / analysis
  • Biophysics
  • Extracellular Matrix* / metabolism
  • Hydrogels / chemistry
  • Tissue Engineering* / methods

Substances

  • Biocompatible Materials
  • Hydrogels