An insulin-degrading enzyme (IDE) was purified from the cytosol of human erythrocytes via the use of ammonium sulfate precipitation and chromatography on columns composed of DEAE-Sephadex, pentylagarose, hydroxylapatite, chromatofocusing resins, and Ultrogel AcA-34. The final preparation was purified greater than 50,000-fold and exhibited a single protein band of Mr = 110,000 on reduced sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Cross-linking of 125I-labeled insulin to the enzyme preparation labeled a protein of the same molecular weight, indicating that this band was in fact the enzyme. Intact insulin, insulin B chain, and glucagon inhibited this cross-linking half-maximally at concentrations of 0.1, 1, and 1.5 microM, respectively. Under nondenaturing conditions, the enzyme had an Mr = 300,000, suggesting that the enzyme may exist under physiological conditions as a dimer or timer. The purified enzyme was inhibited by both sulfhydrylmodifying reagents and chelating agents, indicating that a free thiol and metal were both required for the activity of the enzyme. The purified enzyme was found to degrade physiological concentrations of intact insulin more rapidly than insulin B chain, although at high substrate concentrations (greater than 1 microM) the enzyme degraded B chain to a greater extent. Additional characteristics of the enzyme were a pl of 5.2 and a pH optimum of 7.0. These properties of the red blood cell (RBC) enzyme were very similar to those reported for IDEs from other tissues. Moreover, a polyclonal antiserum to the IDE from skeletal muscle was found to recognize the RBC enzyme.