Sapindales is a monophyletic order within the malvid clade of rosids. It represents an interesting group to address questions on floral structure and evolution due to a wide variation in reproductive traits. This review covers a detailed overview of gynoecium features, as well as a new structural study based on Trichilia pallens (Meliaceae), to provide characters to support systematic relationships and to recognize patterns of variations in gynoecium features in Sapindales. Several unique and shared characteristics are identified. Anacrostylous and basistylous carpels may have evolved multiple times in Sapindales, while ventrally bulging carpels are found in pseudomonomerous Anacardiaceae. Different from previous studies, similar gynoecium features, including degree of syncarpy, ontogenetic patterns, and PTTT structure, favors a closer phylogenetic proximity between Rutaceae and Simaroubaceae, or Rutaceae and Meliaceae. An apomorphic tendency for the order is that the floral apex is integrated in the syncarpous or apocarpous gynoecium, but with different length and shape among families. Nitrariaceae shares similar stigmatic features and PTTT structure with many Sapindaceae. As the current position of both families in Sapindales is uncertain, floral features should be investigated more extensively in future studies. Two different types of gynophore were identified in the order: either derived from intercalary growth below the gynoecium as a floral internode, or by extension of the base of the ovary locules as part of the gynoecium. Sapindales share a combination of gynoecial characters but variation is mostly caused by different degrees of development of the synascidiate part relative to the symplicate part of carpels, or the latter part is absent. Postgenital fusion of the upper part of the styles leads to a common stigma, while stylar lobes may be separate. Due to a wide variation in these features, a new terminology regarding fusion is proposed to describe the gynoecium of the order.
Keywords: Apomorphic tendency; Carpellodes; Congenital fusion; Fruit; Gynoecium architecture; Postgenital fusion; Syncarpy; Vascularization.
© 2022. The Author(s) under exclusive licence to The Botanical Society of Japan.