Background: Retinal microvasculature assessment at capillary level may potentially aid the evaluation of early microvascular changes due to hypertension. We aimed to investigate associations between the measures obtained using optical coherence tomography (OCT) and OCT-angiography (OCT-A) and hypertension, in a southern Italian older population.
Methods: We performed a cross-sectional analysis from a population-based study on 731 participants aged 65 years+ subdivided into two groups according to the presence or absence of blood hypertension without hypertensive retinopathy. The average thickness of the ganglion cell complex (GCC) and the retinal nerve fiber layer (RNFL) were measured. The foveal avascular zone area, vascular density (VD) at the macular site and of the optic nerve head (ONH) and radial peripapillary capillary (RPC) plexi were evaluated. Logistic regression was applied to assess the association of ocular measurements with hypertension.
Results: GCC thickness was inversely associated with hypertension (odds ratio (OR): 0.98, 95% confidence interval (CI): 0.97-1). A rarefaction of VD of the ONH plexus at the inferior temporal sector (OR: 0.95, 95% CI: 0.91-0.99) and, conversely, a higher VD of the ONH and RPC plexi inside optic disc (OR: 1.07, 95% CI: 1.04-1.10; OR: 1.04, 95% CI: 1.02-1.06, respectively) were significantly associated with hypertension.
Conclusion: A neuroretinal thinning involving GCC and a change in capillary density at the peripapillary network were related to the hypertension in older patients without hypertensive retinopathy. Assessing peripapillary retinal microvasculature using OCT-A may be a useful non-invasive approach to detect early microvascular changes due to hypertension.
Keywords: ganglion cell complex; hypertension; older adults; optic nerve head; optical coherence tomography; optical coherence tomography angiography; radial peripapillary capillary.