Many lipophilic metabolites produced by terrestrial plants are deposited on plant surfaces to protect them from abiotic and biotic stresses. Plant-derived lipophilic metabolites include apoplastic biopolymers, such as wax, cutin, sporopollenin, suberin, and lignin, as well as low-molecular-weight secondary metabolites. These secreted molecules confer adaptive toughness and robustness on plants. The mechanisms responsible for the secretion of these lipophilic metabolites remain unclear, although two pathways, mediated by transporters and vesicles, have been proposed. Recent genetic and biochemical studies have shown that G-type ATP-binding cassette (ABCG) transporters and membrane trafficking factors are involved in the apoplastic accumulation of lipophilic metabolites in plants. These two distinctive modes of secretion may be either exclusive or collaborative. This review describes these transporter-dependent and vesicle-mediated mechanisms underlying the secretion of lipophilic metabolites.
Keywords: ABCG transporter; Apoplast; Apoplastic diffusion barrier; Cell wall; Cuticle; Lipophilic metabolite; Plasma membrane; Secretion; Specialized metabolite; Vesicle.
Copyright © 2022 Elsevier Ltd. All rights reserved.