Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2

Arch Pharm (Weinheim). 2022 May;355(5):e2100360. doi: 10.1002/ardp.202100360. Epub 2022 Mar 4.

Abstract

Corona Virus Disease-19 (COVID-19) is a pandemic disease mainly caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It had spread from Wuhan, China, in late 2019 and spread over 222 countries and territories all over the world. Earlier, at the very beginning of COVID-19 infection, there were no approved medicines or vaccines for combating this disease, which adversely affected a lot of individuals worldwide. Although frequent mutation leads to the generation of more deadly variants of SARS-CoV-2, researchers have developed several highly effective vaccines that were approved for emergency use by the World Health Organization (WHO), such as mRNA-1273 by Moderna, BNT162b2 by Pfizer/BioNTech, Ad26.COV2.S by Janssen, AZD1222 by Oxford/AstraZeneca, Covishield by the Serum Institute of India, BBIBP-CorV by Sinopharm, coronaVac by Sinovac, and Covaxin by Bharat Biotech, and the first US Food and Drug Administration-approved antiviral drug Veklury (remdesivir) for the treatment of COVID-19. Several waves of COVID-19 have already occurred worldwide, and good-quality vaccines and medicines should be available for ongoing as well as upcoming waves of the pandemic. Therefore, in silico studies have become an excellent tool for identifying possible ligands that could lead to the development of safer medicines or vaccines. Various phytoconstituents from plants and herbs with antiviral properties are studied further to obtain inhibitors of SARS-CoV-2. In silico screening of various molecular databases like PubChem, ZINC, Asinex Biol-Design Library, and so on has been performed extensively for finding effective ligands against targets. Herein, in silico studies carried out by various researchers are summarized so that one can easily find the best molecule for further in vitro and in vivo studies.

Keywords: COVID-19; SARS-CoV-2; antiviral phytoconstituents; in silico screening; molecular docking.

Publication types

  • Review

MeSH terms

  • Ad26COVS1
  • Antiviral Agents / pharmacology
  • BNT162 Vaccine
  • COVID-19 Drug Treatment*
  • ChAdOx1 nCoV-19
  • Humans
  • Ligands
  • SARS-CoV-2*
  • Structure-Activity Relationship
  • United States

Substances

  • Ad26COVS1
  • Antiviral Agents
  • Ligands
  • ChAdOx1 nCoV-19
  • BNT162 Vaccine