Background: There is a paucity of data regarding the association between radiation exposure of heart substructures and the incidence of major coronary events (MCEs) in patients with esophageal cancer (ESOC) undergoing chemoradiation therapy. We studied radiation dosimetric determinants of MCE risk and measured their impact on patient prognosis using a cohort of ESOC patients treated at a single institution. Methods: Between March 2005 and October 2015, 355 ESOC patients treated with concurrent chemoradiotherapy were identified from a prospectively maintained and institutional-regulatory-board-approved clinical database. Dose-distribution parameters of the whole heart, the atria, the ventricles, the left main coronary artery, and three main coronary arteries were extracted for analysis. Results: Within a median follow-up time of 67 months, 14 patients experienced MCEs at a median of 16 months. The incidence of MCEs was significantly associated with the left anterior descending coronary artery (LAD) receiving ≥30 Gy (V30Gy) (p = 0.048). Patients receiving LAD V30Gy ≥ 10% of volume experienced a higher incidence of MCEs versus the LAD V30Gy < 10% group (p = 0.044). The relative rate of death increased with the left main coronary artery (LMA) mean dose (Gy) (p = 0.002). Furthermore, a mutual promotion effect of hyperlipidemia and RT on MCEs was observed. Conclusion: Radiation dose to coronary substructures is associated with MCEs and overall survival in patients with ESOC. In this study, the doses to these substructures appeared to be better predictors of toxicity outcomes than mean heart dose (MHD) or whole-heart V30Gy. These findings have implications for reducing coronary events through radiation therapy planning.
Keywords: esophageal cancer; heart substructure; major coronary events; radiotherapy; survival.