Introduction: Due to changes in esophageal position, preoperative assessment of the esophageal location may not mitigate the risk of esophageal injury in catheter ablation for atrial fibrillation (AF). This study aimed to assess esophageal motion and its impact on AF ablation strategies.
Methods and results: Ninety-seven AF patients underwent two computed tomography (CT) scans. The area at risk of esophageal injury (AAR) was defined as the left atrial surface ≤3 mm from the esophagus. On CT1, ablation lines were drawn blinded to the esophageal location to create three ablation sets: individual pulmonary vein isolation (PVI), wide antral circumferential ablation (WACA), and WACA with linear ablation (WACA + L). Thereafter, ablation lines for WACA and WACA + L were personalized to avoid the AAR. Rigid registration was performed to align CT1 onto CT2, and the relationship between ablation lines and the AAR on CT2 was analyzed. The esophagus moved by 3.6 [2.7 to 5.5] mm. The AAR on CT2 was 8.6 ± 3.3 cm2 , with 77% overlapping that on CT1. High body mass index was associated with the AAR mismatch (standardized β 0.382, p < .001). Without personalization, AARs on ablation lines for individual PVI, WACA, and WACA + L were 0 [0-0.4], 0.8 [0.5-1.2], and 1.7 [1.2-2.0] cm2 . Despite the esophageal position change, the personalization of ablation lines for WACA and WACA + L reduced the AAR on lines to 0 [0-0.5] and 0.7 [0.3-1.0] cm2 (p < .001 for both).
Conclusion: The personalization of ablation lines based on a preoperative CT reduced ablation to the AAR despite changes in esophageal position.
Keywords: atrial fibrillation; catheter ablation; collateral damage; computed tomography; esophagus.
© 2022 Wiley Periodicals LLC.