Island-bridge architectures represent a widely used structural design in stretchable inorganic electronics, where deformable interconnects that form the bridge provide system stretchability, and functional components that reside on the islands undergo negligible deformations. These device systems usually experience a common strain concentration phenomenon, i.e., "island effect", because of the modulus mismatch between the soft elastomer substrate and its on-top rigid components. Such an island effect can significantly raise the surrounding local strain, therefore increasing the risk of material failure for the interconnects in the vicinity of the islands. In this work, a systematic study of such an island effect through combined theoretical analysis, numerical simulations and experimental measurements is presented. To relieve the island effect, a buffer layer strategy is proposed as a generic route to enhanced stretchabilities of deformable interconnects. Both experimental and numerical results illustrate the applicability of this strategy to 2D serpentine and 3D helical interconnects, as evidenced by the increased stretchabilities (e.g., by 1.5 times with a simple buffer layer, and 2 times with a ring buffer layer, both for serpentine interconnects). The application of the patterned buffer layer strategy in a stretchable light emitting diodes system suggests promising potentials for uses in other functional device systems.
Keywords: buffer layers; island effects; strain concentration; stretchable electronics.
© 2022 Wiley-VCH GmbH.