Concordant visual-auditory stimuli enhance the responses of individual superior colliculus (SC) neurons. This neuronal capacity for "multisensory integration" is not innate: it is acquired only after substantial cross-modal (e.g. auditory-visual) experience. Masking transient auditory cues by raising animals in omnidirectional sound ("noise-rearing") precludes their ability to obtain this experience and the ability of the SC to construct a normal multisensory (auditory-visual) transform. SC responses to combinations of concordant visual-auditory stimuli are depressed, rather than enhanced. The present experiments examined the behavioral consequence of this rearing condition in a simple detection/localization task. In the first experiment, the auditory component of the concordant cross-modal pair was novel, and only the visual stimulus was a target. In the second experiment, both component stimuli were targets. Noise-reared animals failed to show multisensory performance benefits in either experiment. These results reveal a close parallel between behavior and single neuron physiology in the multisensory deficits that are induced when noise disrupts early visual-auditory experience.
Keywords: cross-modal; development; multisensory integration; noise-rearing; vision.
© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.