Eutectogels as Matrices to Manipulate Supramolecular Chirality and Circularly Polarized Luminescence

ACS Nano. 2022 Apr 26;16(4):6825-6834. doi: 10.1021/acsnano.2c01731. Epub 2022 Mar 29.

Abstract

Solvent is regarded as a factor in tuning the supramolecular chirality of self-assemblies. Deep eutectic solvents (DESs) show diverse properties in contrast to other common solvents, which are emerging in fabricating functional aggregates and nanoarchitectures. Nevertheless, the emergence and manipulation of supramolecular chirality in DES still remain mysterious. Exploring supramolecular chirality in DES would produce tunable chiroptical materials considering their feasible preparation process and abundant hydrogen bonding sites. In this work, we explored the occurrence and manipulation of supramolecular chirality in DES. Transfer from inherent chiral DES to solutes in either aggregated or monomeric building units is blocked. However, the chiral assembly of π-conjugated amino acids was realized. Compared to aqueous media, self-assembly in DES hinders the spontaneous structural and chirality evolution that benefit from efficient solvation, where the π-conjugated amino acids were involved as hydrogen bonding donors. DES performs as a dye-friendly matrix to afford chiroptical eutectogels with tunable circularly polarized luminescence, whereby a large dissymmetry g-factor of up to 0.015 was realized. DES behaves as feasible and flexible solvents to fabricate and stabilize functional soft chiral self-assemblies with controllable chiroptical properties.

Keywords: chirality transfer; circularly polarized luminescence; deep eutectic solvent; eutectogel; supramolecular chirality; π-conjugated amino acid.