Ten-year safety of pluripotent stem cell transplantation in acute thoracic spinal cord injury

J Neurosurg Spine. 2022 Apr 1;37(3):321-330. doi: 10.3171/2021.12.SPINE21622. Print 2022 Sep 1.

Abstract

Objective: The purpose of this study was to evaluate the safety of oligodendrocyte progenitor cells (LCTOPC1) derived from human pluripotent stem cells administered between 7 and 14 days postinjury to patients with T3 to T11 neurologically complete spinal cord injury (SCI). The rationale for this first-in-human trial was based on evidence that administration of LCTOPC1 supports survival and potential repair of key cellular components and architecture at the SCI site.

Methods: This study was a multisite, open-label, single-arm interventional clinical trial. Participants (n = 5) received a single intraparenchymal injection of 2 × 106 LCTOPC1 caudal to the epicenter of injury using a syringe positioning device. Immunosuppression with tacrolimus was administered for a total of 60 days. Participants were followed with annual in-person examinations and MRI for 5 years at the time of this report and will be followed with annual telephone questionnaires for 6 to 15 years postinjection. The primary endpoint was safety, as measured by the frequency and severity of adverse events related to the LCTOPC1 injection, the injection procedure, and/or the concomitant immunosuppression administered. The secondary endpoint was neurological function as measured by sensory scores and lower-extremity motor scores as measured by the International Standards for Neurological Classification of Spinal Cord Injury examinations.

Results: No unanticipated serious adverse events related to LCTOPC1 have been reported with 98% follow-up of participants (49 of 50 annual visits) through the first 10 years of the clinical trial. There was no evidence of neurological decline, enlarging masses, further spinal cord damage, or syrinx formation. MRI results during the long-term follow-up period in patients administered LCTOPC1 cells showed that 80% of patients demonstrated T2 signal changes consistent with the formation of a tissue matrix at the injury site.

Conclusions: This study provides crucial first-in-human safety data supporting the pursuit of future human embryonic stem cell-derived therapies. While we cannot exclude the possibility of future adverse events, the experience in this trial provides evidence that this cell type can be well tolerated by patients, with an event-free period of up to 10 years. Based on the safety profile of LCTOPC1 obtained in this study, a cervical dose escalation trial was initiated (NCT02302157).

Keywords: AST-OPC1; GRNOPC1; LCTOPC1; central nervous system; clinical trials; human embryonic stem cells; spinal cord injury; thoracic; trauma.

Associated data

  • ClinicalTrials.gov/NCT02302157