Quantitative phosphoproteomic analyses identify STK11IP as a lysosome-specific substrate of mTORC1 that regulates lysosomal acidification

Nat Commun. 2022 Apr 1;13(1):1760. doi: 10.1038/s41467-022-29461-8.

Abstract

The evolutionarily conserved serine/threonine kinase mTORC1 is a central regulator of cell growth and proliferation. mTORC1 is activated on the lysosome surface. However, once mTORC1 is activated, it is unclear whether mTORC1 phosphorylates local lysosomal proteins to regulate specific aspects of lysosomal biology. Through cross-reference analyses of the lysosome proteome with the mTORC1-regulated phosphoproteome, we identify STK11IP as a lysosome-specific substrate of mTORC1. mTORC1 phosphorylates STK11IP at Ser404. Knockout of STK11IP leads to a robust increase of autophagy flux. Dephosphorylation of STK11IP at Ser404 represses the role of STK11IP as an autophagy inhibitor. Mechanistically, STK11IP binds to V-ATPase, and regulates the activity of V-ATPase. Knockout of STK11IP protects mice from fasting or Methionine/Choline-Deficient Diet (MCD)-induced fatty liver. Thus, our study demonstrates that STK11IP phosphorylation represents a mechanism for mTORC1 to regulate lysosomal acidification and autophagy, and points to STK11IP as a promising therapeutic target for the amelioration of diseases with aberrant autophagy signaling.

MeSH terms

  • Adaptor Proteins, Signal Transducing / metabolism*
  • Animals
  • Hydrogen-Ion Concentration
  • Lysosomes / metabolism
  • Mechanistic Target of Rapamycin Complex 1 / metabolism
  • Mice
  • Mice, Knockout
  • Multiprotein Complexes* / metabolism
  • TOR Serine-Threonine Kinases* / metabolism

Substances

  • Adaptor Proteins, Signal Transducing
  • Multiprotein Complexes
  • Stk11ip protein, mouse
  • Mechanistic Target of Rapamycin Complex 1
  • TOR Serine-Threonine Kinases