Transient MyoD overexpression in concert with small molecule treatment reprograms mouse fibroblasts into induced myogenic progenitor cells (iMPCs). However, the molecular landscape and mechanisms orchestrating this cellular conversion remain unknown. Here, we undertook an integrative multiomics approach to delineate the process of iMPC reprogramming in comparison to myogenic transdifferentiation mediated solely by MyoD. Using transcriptomics, proteomics, and genome-wide chromatin accessibility assays, we unravel distinct molecular trajectories that govern the two processes. Notably, only iMPC reprogramming is characterized by gradual up-regulation of muscle stem cell markers, unique signaling pathways, and chromatin remodelers in conjunction with exclusive chromatin opening in core myogenic promoters. In addition, we determine that the Notch pathway is indispensable for iMPC formation and self-renewal and further use the Notch ligand Dll1 to homogeneously propagate iMPCs. Collectively, this study charts divergent molecular blueprints for myogenic transdifferentiation or reprogramming and underpins the heightened capacity of iMPCs for capturing myogenesis ex vivo.