Type I but Not Type II Calreticulin Mutations Activate the IRE1α/XBP1 Pathway of the Unfolded Protein Response to Drive Myeloproliferative Neoplasms

Blood Cancer Discov. 2022 Jul 6;3(4):298-315. doi: 10.1158/2643-3230.BCD-21-0144.

Abstract

Approximately 20% of patients with myeloproliferative neoplasms (MPN) harbor mutations in the gene calreticulin (CALR), with 80% of those mutations classified as either type I or type II. While type II CALR-mutant proteins retain many of the Ca2+ binding sites present in the wild-type protein, type I CALR-mutant proteins lose these residues. The functional consequences of this differential loss of Ca2+ binding sites remain unexplored. Here, we show that the loss of Ca2+ binding residues in the type I mutant CALR protein directly impairs its Ca2+ binding ability, which in turn leads to depleted endoplasmic reticulum (ER) Ca2+ and subsequent activation of the IRE1α/XBP1 pathway of the unfolded protein response. Genetic or pharmacologic inhibition of IRE1α/XBP1 signaling induces cell death in type I mutant but not type II mutant or wild-type CALR-expressing cells, and abrogates type I mutant CALR-driven MPN disease progression in vivo.

Significance: Current targeted therapies for CALR-mutated MPNs are not curative and fail to differentiate between type I- versus type II-driven disease. To improve treatment strategies, it is critical to identify CALR mutation type-specific vulnerabilities. Here we show that IRE1α/XBP1 represents a unique, targetable dependency specific to type I CALR-mutated MPNs. This article is highlighted in the In This Issue feature, p. 265.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Calcium / metabolism
  • Calreticulin* / genetics
  • Endoribonucleases / genetics
  • Humans
  • Mutant Proteins / chemistry
  • Mutation
  • Myeloproliferative Disorders* / genetics
  • Neoplasms*
  • Protein Serine-Threonine Kinases / genetics
  • Unfolded Protein Response*
  • X-Box Binding Protein 1 / genetics

Substances

  • CALR protein, human
  • Calreticulin
  • Mutant Proteins
  • X-Box Binding Protein 1
  • XBP1 protein, human
  • ERN1 protein, human
  • Protein Serine-Threonine Kinases
  • Endoribonucleases
  • Calcium