Hemodialysis is a life-sustaining therapy for millions of people worldwide. However, despite considerable technical and scientific improvements, results are still not fully satisfactory in terms of morbidity and mortality. The membrane contained in the hemodialyzer is undoubtedly the main determinant of the success and quality of hemodialysis therapy. Membrane properties influence solute removal and the interactions with blood components that define the membrane's biocompatibility. Bioincompatibility is considered a potential contributor to several uremic complications. Thus, the development of more biocompatible polymers used as hemodialyzer membrane is of utmost importance for improving results and clinical patient outcomes. Many different surface-modified membranes for hemodialysis have been manufactured over recent years by varying approaches in the attempt to minimize blood incompatibility. Their main characteristics and clinical results in hemodialysis patients were reviewed in the present article.
Keywords: biocompatibility; biomaterial; coagulation; hemodialysis; membrane; platelet; protein adsorption; surface modification.