Inflammatory caspases include caspase-1, -4, -5, -11, and -12 and belong to the subgroup of initiator caspases. Caspase-1 is required to ensure correct regulation of inflammatory signaling and is activated by proximity-induced dimerization following recruitment to inflammasomes. Caspase-1 is abundant in the monocytic cell lineage and induces maturation of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 to active secreted molecules. The other inflammatory caspases, caspase-4 and -5 (and their murine homolog caspase-11) promote IL-1β release by inducing pyroptosis. Caspase Bimolecular Fluorescence Complementation (BiFC) is a tool used to measure inflammatory caspase induced proximity as a readout of caspase activation. The caspase-1, -4, or -5 prodomain, which contains the region that binds to the inflammasome, is fused to non-fluorescent fragments of the yellow fluorescent protein Venus (Venus-N [VN] or Venus-C [VC]) that associate to reform the fluorescent Venus complex when the caspases undergo induced proximity. This protocol describes how to introduce these reporters into primary human monocyte-derived macrophages (MDM) using nucleofection, treat the cells to induce inflammatory caspase activation, and measure caspase activation using fluorescence and confocal microscopy. The advantage of this approach is that it can be used to identify the components, requirements, and localization of the inflammatory caspase activation complex in living cells. However, careful controls need to be considered to avoid compromising cell viability and behavior. This technique is a powerful tool for the analysis of dynamic caspase interactions at the inflammasome level as well as for the interrogation of the inflammatory signaling cascades in living MDM and monocytes derived from human blood samples.