In preclinical models, the development and optimization of protein-drug conjugates require accurate determination of the plasma and tissue profiles of both the protein and its conjugated drug. To this aim, we developed a bioanalytical strategy based on dual radiolabeling and ex vivo digital imaging. By combining enzymatic and chemical reactions, we obtained homogeneous dual-labeled anti-MMP-14 Fabs (antigen-binding fragments) conjugated to monomethyl auristatin E where the protein scaffold was labeled with carbon-14 (14C) and the conjugated drug with tritium (3H). These antibody-drug conjugates with either a noncleavable or a cleavable linker were then evaluated in vivo. By combining liquid scintillation counting and ex vivo dual-isotope radio-imaging, it was possible not only to monitor both components simultaneously during their circulation phase but also to quantify accurately their amount accumulated within the different organs.