The increasing exploitation and application of rare earth elements (REEs) may induce hazardous risks to freshwater aquatic organisms. Due to the lack of water quality criteria (WQC) and sufficient reliable toxicity data, little information is available on the ecological risk of REEs in surface water. In this study, lanthanum (La) toxicity data were collected from published toxicological studies, and the data quality was assessed using a toxicological data reliability assessment tool. To obtain more toxicity data, Daphnia magna, Cyprinus carpio, and Dania rerio embryos were selected as surrogate species, and an interspecies correlation estimation (ICE) model was used to predict the toxicity of La for untested species. The species sensitivity distributions (SSDs) of La toxicity and WQC were investigated. Differences were observed in the hazardous concentrations for 5% of species (HC5), but no statistically significant differences were noted in the SSD curves between the measured acute toxicity data and the predicted data. For the SSDs constructed from the measured toxicity data, the ICE-predicted toxicity data and all acute data supplemented with the ICE-predicted data, the acute WQC values of La were 88, 1022 and 256 μg/L, respectively. According to the SSD and corresponding HC5 of chronic toxicity data, the chronic WQC was 14 μg/L. The results provide a scientific reference for establishing WQC for freshwater aquatic organisms and ecological risk assessments of REEs.
Keywords: Ecological risk; Ecotoxicology; Freshwater; Rare earth element; Toxicity prediction.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.