The Cort-Adaptation hypothesis suggests that elevated glucocorticoids (GCs) can facilitate an adaptive response to environmental and physiological challenges. Most previous studies have focused on avian species, which may limit their generalizability to mammals, where lactation is known to be a major physiological challenge. Furthermore, the effect of predation risk on GC levels has not been tested in the Cort-Adaptation hypothesis. We sought to test this hypothesis in a colonial prey species, black-tailed prairie dogs (Cynomys ludovicianus). We predicted that individuals located near fewer neighboring conspecifics would perceive an increased risk of predation and, in turn, have increased GCs (measured through hair cortisol concentration (HCC)) and reduced annual reproductive success compared to more centrally located individuals. We also investigated other putative influences on HCC: age, lactation status, body condition, and season of hair growth. Levels of vigilance behavior were higher for those with fewer neighboring conspecifics, suggesting variation in perceived risk of predation. Further, the risk of predation appeared to represent a chronic, detrimental stressor as evidenced by a significant increase in HCC for prairie dogs with fewer neighbors. Lactation status and season also influenced HCC. We found support for the Cort-Adaptation hypothesis where increased HCC during the reproductive season correlated with whether a female produced a litter, but not litter size, suggesting a minimum threshold of GCs is required for successful reproduction in this species. Our work illustrates that HCC may operate as an indicator of perceived predation risk, but care should be taken to consider the variety of factors influencing GC homeostasis, in particular lactation, when drawing conclusions using HCC as a marker of long-term stress.
Keywords: Cort-adaptation hypothesis; Cynomys ludovicianus; Fitness; Hair cortisol; Prairie dogs; Predation risk; Stress.
Copyright © 2022 Elsevier Inc. All rights reserved.