Purpose: To study the wider field swept-source optical coherence tomography angiography (WF SS-OCTA) metrics, especially non-perfusion area (NPA), in the diagnosing and staging of DR.
Design: Cross-sectional observational study (November 2018-September 2020).
Participants: 473 eyes of 286 patients (69 eyes of 49 control patients and 404 eyes of 237 diabetic patients).
Methods: We imaged using 6mm×6mm and 12mm×12mm angiograms on WF SS-OCTA. Images were analyzed using the ARI Network and FIJI ImageJ. Mixed effects multiple regression models and receiver operator characteristic analysis was used for statistical analyses.
Main outcome measures: Quantitative metrics such as vessel density (VD); vessel skeletonized density (VSD); foveal avascular zone (FAZ) area, circularity, and perimeter; and NPA in DR and their relative performance for its diagnosis and grading.
Results: Among patients with diabetes (median age 59 years), 51 eyes had no DR, 185 eyes (88 mild, 97 moderate-severe) had non-proliferative DR (NPDR); and 168 eyes had proliferative DR (PDR). Trend analysis revealed a progressive decline in superficial capillary plexus (SCP) VD and VSD, and increased NPA with increasing DR severity. Additionally, there was a significant reduction in deep capillary plexus (DCP) VD and VSD in early DR (mild NPDR), but the progressive reduction in advanced DR stages was not significant. NPA was the best parameter to diagnose DR (AUC:0.96), whereas all parameters combined on both angiograms efficiently diagnosed (AUC:0.97) and differentiated between DR stages (AUC range:0.83-0.97). The presence of diabetic macular edema was associated with reduced SCP and DCP VD and VSD within mild NPDR eyes, whereas an increased VD and VSD in SCP among moderate-severe NPDR group.
Conclusions: Our work highlights the importance of NPA, which can be more readily and easily measured with WF SS-OCTA compared to fluorescein angiography. It is additionally quick and non-invasive, and hence can be an important adjunct for DR diagnosis and management. In our study, a combination of all OCTA metrics on both 6mm×6mm and 12mm×12mm angiograms had the best diagnostic accuracy for DR and its severity. Further longitudinal studies are needed to assess NPA as a biomarker for progression or regression of DR severity.
Keywords: Optical coherence tomography angiography; capillary dropout; diabetic retinopathy; diabetic retinopathy classification; diabetic retinopathy grading; diabetic retinopathy severity scale; ischemia index; non-perfusion area; quantitative vascular metrics; vessel density; vessel skeletonized density; widefield swept source optical coherence tomography angiography.