Is vertebral shape variability in caecilians (Amphibia: Gymnophiona) constrained by forces experienced during burrowing?

J Exp Biol. 2022 Jun 15;225(12):jeb244288. doi: 10.1242/jeb.244288. Epub 2022 Jun 22.

Abstract

Caecilians are predominantly burrowing, elongate, limbless amphibians that have been relatively poorly studied. Although it has been suggested that the sturdy and compact skulls of caecilians are an adaptation to their head-first burrowing habits, no clear relationship between skull shape and burrowing performance appears to exist. However, the external forces encountered during burrowing are transmitted by the skull to the vertebral column, and, as such, may impact vertebral shape. Additionally, the muscles that generate the burrowing forces attach onto the vertebral column and consequently may impact vertebral shape that way as well. Here, we explored the relationships between vertebral shape and maximal in vivo push forces in 13 species of caecilian amphibians. Our results show that the shape of the two most anterior vertebrae, as well as the shape of the vertebrae at 90% of the total body length, is not correlated with peak push forces. Conversely, the shape of the third vertebrae, and the vertebrae at 20% and 60% of the total body length, does show a relationship to push forces measured in vivo. Whether these relationships are indirect (external forces constraining shape variation) or direct (muscle forces constraining shape variation) remains unclear and will require quantitative studies of the axial musculature. Importantly, our data suggest that mid-body vertebrae may potentially be used as proxies to infer burrowing capacity in fossil representatives.

Keywords: Axial skeleton; Geometric morphometrics; Post-cranial; Push force.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amphibians* / physiology
  • Animals
  • Head
  • Skull*
  • Spine