Cardiac fibroblasts regulate the development of heart failure via Htra3-TGF-β-IGFBP7 axis

Nat Commun. 2022 Jun 7;13(1):3275. doi: 10.1038/s41467-022-30630-y.

Abstract

Tissue fibrosis and organ dysfunction are hallmarks of age-related diseases including heart failure, but it remains elusive whether there is a common pathway to induce both events. Through single-cell RNA-seq, spatial transcriptomics, and genetic perturbation, we elucidate that high-temperature requirement A serine peptidase 3 (Htra3) is a critical regulator of cardiac fibrosis and heart failure by maintaining the identity of quiescent cardiac fibroblasts through degrading transforming growth factor-β (TGF-β). Pressure overload downregulates expression of Htra3 in cardiac fibroblasts and activated TGF-β signaling, which induces not only cardiac fibrosis but also heart failure through DNA damage accumulation and secretory phenotype induction in failing cardiomyocytes. Overexpression of Htra3 in the heart inhibits TGF-β signaling and ameliorates cardiac dysfunction after pressure overload. Htra3-regulated induction of spatio-temporal cardiac fibrosis and cardiomyocyte secretory phenotype are observed specifically in infarct regions after myocardial infarction. Integrative analyses of single-cardiomyocyte transcriptome and plasma proteome in human reveal that IGFBP7, which is a cytokine downstream of TGF-β and secreted from failing cardiomyocytes, is the most predictable marker of advanced heart failure. These findings highlight the roles of cardiac fibroblasts in regulating cardiomyocyte homeostasis and cardiac fibrosis through the Htra3-TGF-β-IGFBP7 pathway, which would be a therapeutic target for heart failure.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fibroblasts / metabolism
  • Fibrosis
  • Heart Failure* / metabolism
  • Humans
  • Insulin-Like Growth Factor Binding Proteins / metabolism
  • Myocardium / metabolism
  • Myocytes, Cardiac / metabolism
  • Serine Endopeptidases / genetics
  • Serine Endopeptidases / metabolism
  • Transforming Growth Factor beta* / metabolism

Substances

  • Insulin-Like Growth Factor Binding Proteins
  • Transforming Growth Factor beta
  • insulin-like growth factor binding protein-related protein 1
  • HTRA3 protein, human
  • Serine Endopeptidases