Determining the efficacy of functional liver imaging score (FLIS) obtained from gadoxetic acid-enhanced MRI in patients with chronic liver disease and liver cirrhosis: the relationship between Albumin-Bilirubin (ALBI) grade and FLIS

Abdom Radiol (NY). 2022 Jul;47(7):2325-2334. doi: 10.1007/s00261-022-03557-7. Epub 2022 Jun 7.

Abstract

Purpose: (1) To evaluate the efficacy of functional liver imaging score (FLIS) in predicting liver function on gadoxetic acid-enhanced MRI in patients with chronic liver disease (CLD) or liver cirrhosis (LC) and its relationship with ALBI grade. (2) To assess the intra-reader reliability and interreader agreement of readers with different levels of experience in abdominal imaging of FLIS.

Methods: We retrospectively included 131 patients (70 men, 61 women; mean ± SD, 53.7 ± 14.6 years) with CLD and LC who underwent GA-enhanced MRI between November 2019 and March 2022. FLIS was assigned as a result of the sum of three hepatobiliary phase (HBP) images features, each scored 0-2: liver parenchymal enhancement, biliary contrast excretion, and portal vein sign. FLIS was calculated using HPB images independently by three radiologists with different experience. In addition, 50 randomly selected patients were reviewed a second time by a reader to assess intra-reader reliability. Patients were divided into the following three groups according to the albumin-bilirubin (ALBI) grade: ALBI grade 1, 2, and 3. We evaluated the correlation between ALBI grade and both FLIS and its parameters using Spearman's rank correlation for each reader. Receiver operating characteristic (ROC) curve analysis was performed to show the optimal cut-off value of FLIS to distinguish between ALBI grades. Intra-reader reliability and inter-reader agreement were evaluated by intraclass correlation coefficient (ICC).

Results: FLIS and three FLIS parameters showed very strong correlation with ALBI grade for each readers (r = - 0.843 to 0.976, - 0.831 to 0.962, and - 0.819 to 0.902, respectively). ROC curve analysis showed that FLIS ≥ 5 was the optimal cutoff for prediction of ALBI grade 1 for each readers (sensitivity, 83.7% to 95.4%; specificity, 82.6% to 87%; accuracy, 88.6% to 93.6% and area under the curve (AUC), 0.882 to 0.917), and FLIS ≤ 3 was the optimal cutoff for distinguish ALBI grade 3 from other grades for each readers (sensitivity, 100%; specificity, 95.2% to 96%; accuracy, 95.4% to 96.2% and AUC, 0.974 to 0.994). Intra-reader reliability (ICC = 0.95; 95% CI 0.93-0.96) and inter-reader agreement (ICC = 0.85 to 0.90; 95% CI 0.82-0.97) for FLIS were excellent.

Conclusion: FLIS showed a very correlation with hepatic function level and can stratify the ALBI grades. This feature has demonstrated the potential of FLIS to be excellent radiological tools for predicting of liver function of CLD and LC patients in clinical practice. Also, the excellent agreement of FLIS among readers with different levels of experience indicates that it can be used with high accuracy and reproducibility regardless of experience.

Keywords: Chronic liver disease; Functional liver imaging scores; Gadoxetic acid; Liver cirrhosis; Liver function estimation; Magnetic resonance imaging.

MeSH terms

  • Albumins
  • Bilirubin
  • Contrast Media
  • Female
  • Gadolinium DTPA
  • Humans
  • Liver Cirrhosis / diagnostic imaging
  • Liver Diseases*
  • Liver Neoplasms*
  • Magnetic Resonance Imaging / methods
  • Male
  • Reproducibility of Results
  • Retrospective Studies

Substances

  • Albumins
  • Contrast Media
  • gadolinium ethoxybenzyl DTPA
  • Gadolinium DTPA
  • Bilirubin