We compute the three-loop helicity amplitudes for the scattering of four gluons in QCD. We employ projectors in the 't Hooft-Veltman scheme and construct the amplitudes from a minimal set of physical building blocks, which allows us to keep the computational complexity under control. We obtain relatively compact results that can be expressed in terms of harmonic polylogarithms. In addition, we consider the Regge limit of our amplitude and extract the gluon Regge trajectory in full three-loop QCD. This is the last missing ingredient required for studying single-Reggeon exchanges at next-to-next-to-leading logarithmic accuracy.