The growing interest in the use of lentiviral vectors (LVs) for various applications has created a strong demand for large quantities of vectors. To meet the increased demand, we developed a high cell density culture process for production of LV using stable producer clones generated from HEK293 cells, and improved volumetric LV productivity by up to fivefold, reaching a high titer of 8.2 × 107 TU/mL. However, culture media selection and feeding strategy development were not straightforward. The stable producer clone either did not grow or grow to lower cell density in majority of six commercial HEK293 media selected from four manufacturers, although its parental cell line, HEK293 cell, grows robustly in these media. In addition, the LV productivity was only improved up to 53% by increasing cell density from 1 × 106 and 3.8 × 106 cells/mL at induction in batch cultures using two identified top performance media, even these two media supported the clone growth to 5.7 × 106 and 8.1 × 106 cells/mL, respectively. A combination of media and feed from different companies was required to provide diverse nutrients and generate synergetic effect, which supported the clone growing to a higher cell density of 11 × 106 cells/mL and also increasing LV productivity by up to fivefold. This study illustrates that culture media selection and feeding strategy development for a new clone or cell line can be a complex process, due to variable nutritional requirements of a new clone. A combination of diversified culture media and feed provides a broader nutrients and could be used as one fast approach to dramatically improve process performance.
Keywords: Culture medium optimization; Fed-batch; High cell density; Lentiviral vector; Stable producer clone.
© 2022. Crown.