Guidelines for surgical prophylactic dosing of cefazolin in bariatric surgery vary in terms of recommended dose. This study aimed to describe the plasma and interstitial fluid (ISF) cefazolin pharmacokinetics in patients undergoing bariatric surgery and to determine an optimum dosing regimen. Abdominal subcutaneous ISF concentrations (measured using microdialysis) and plasma samples were collected at regular time points after administration of cefazolin 2 g intravenously. Total and unbound cefazolin concentrations were assayed and then modeled using Pmetrics. Monte Carlo dosing simulations (n = 5,000) were used to define cefazolin dosing regimens able to achieve a fractional target attainment (FTA) of >95% in the ISF suitable for the MIC for Staphylococcus aureus in isolates of ≤2 mg · L-1 and for a surgical duration of 4 h. Fourteen patients were included, with a mean (standard deviation [SD]) bodyweight of 148 (35) kg and body mass index (BMI) of 48 kg · m-2. Cefazolin protein binding ranged from 14 to 36% with variable penetration into ISF of 58% ± 56%. Cefazolin was best described as a four-compartment model including nonlinear protein binding. The mean central volume of distribution in the final model was 18.2 (SD 3.31) L, and the mean clearance was 32.4 (SD 20.2) L · h-1. A standard 2-g dose achieved an FTA of >95% for all patients with BMIs ranging from 36 to 69 kg · m-2. A 2-g prophylactic cefazolin dose achieves appropriate unbound plasma and ISF concentrations in obese and morbidly obese bariatric surgery patients.
Keywords: antibiotic; bariatric; cefazolin; population pharmacokinetics; surgery.