Solvents drive self-assembly mechanisms and inherent properties of Kraft lignin nanoparticles (<50 nm)

J Colloid Interface Sci. 2022 Nov 15:626:178-192. doi: 10.1016/j.jcis.2022.06.089. Epub 2022 Jun 23.

Abstract

Hypothesis: Strikingly, Kraft lignin nanoparticles (KLNPs) can substitute polluting nanoparticles in diverse applications. An attractive method for synthesizing KLNPs is Solvent shifting. We hypothesized that by a detailed understanding of the solvent properties and influence of the process parameters, one could derive new fundamental and technical information about the lignin nanoparticle formation process.

Experiments: DMSO and THF were chosen best solvents based on the Hansen solubility parameter of lignin. The four synthesis parameters such as lignin concentration, (anti-solvent) water volume, temperature, and stirring speed were used to investigate the size, polydispersity index (PDI), morphology as well as the thermal, mechanical and optical properties of KLNPsDMSO & KLNPsTHF.

Findings: KLNPsTHF follows the well-known nucleation and growth (NG) mechanism, resulting in spherical KLNPs (43 ± 12 nm: 0.20 PDI). Surprisingly, KLNPsDMSO follows a unique mechanism resembling spinodal decomposition (SD), which generates rare bicontinuous-to-spherical KLNPs (17 ± 8 nm: 0.20 PDI). Remarkably, we show that the difference in the KLNPs mechanism modulates their intrinsic properties, such as glass transition temperature (Tg), specific surface area (SSA), elastic modulus (EM) and optical properties. Beyond the new mechanism, our synthesis resulted in reproducible ultra-small KLNPs with an excellent % yield. Such findings have vast implications in high-performance nanocomposites.

Keywords: Elastic modulus; Glass transition temperature; Lignin nanoparticles; Nucleation-growth mechanism; Reinforcing filler; Self-assembly; Size-dependent properties; Solvent shifting; Specific surface area; Spinodal decomposition mechanism.

MeSH terms

  • Dimethyl Sulfoxide
  • Lignin*
  • Nanoparticles*
  • Solvents

Substances

  • Solvents
  • Kraft lignin
  • Lignin
  • Dimethyl Sulfoxide