Food ontologies are acquiring a central role in human nutrition, providing a standardized terminology for a proper description of intervention and observational trials. In addition to bioactive molecules, several fermented foods, particularly dairy products, provide the host with live microorganisms, thus carrying potential "genetic/functional" nutrients. To date, a proper ontology to structure and formalize the concepts used to describe fermented foods is lacking. Here we describe a semantic representation of concepts revolving around what consuming fermented foods entails, both from a technological and health point of view, focusing actions on kefir and Parmigiano Reggiano, as representatives of fresh and ripened dairy products. We included concepts related to the connection of specific microbial taxa to the dairy fermentation process, demonstrating the potential of ontologies to formalize the various gene pathways involved in raw ingredient transformation, connect them to resulting metabolites, and finally to their consequences on the fermented product, including technological, health and sensory aspects. Our work marks an improvement in the ambition of creating a harmonized semantic model for integrating different aspects of modern nutritional science. Such a model, besides formalizing a multifaceted knowledge, will be pivotal for a rich annotation of data in public repositories, as a prerequisite to generalized meta-analysis.
Keywords: food microbiome; food web; human health; metabolic network; nutrients; nutrition; ontological model.