S-Nitrosothiol (RS-NO) generation/levels have been implicated as being important to numerous physiological and pathophysiological processes. As such, the mechanism(s) of their generation and degradation are important factors in determining their biological activity. Along with the effects on the activity of thiol proteins, RS-NOs have also been reported to be reservoirs or storage forms of nitric oxide (NO). That is, it is hypothesized that NO can be released from RS-NO at opportune times to, for example, regulate vascular tone. However, to date there are few established mechanisms that can account for facile NO release from RS-NO. Recent discovery of the biological formation and prevalence of hydropersulfides (RSSH) and their subsequent reaction with RS-NO species provides a possible route for NO release from RS-NO. Herein, it is found that RSSH is capable of reacting with RS-NO to liberate NO and that the analogous reaction using RSH is not nearly as proficient in generating NO. Moreover, computational results support the prevalence of this reaction over other possible competing processes. Finally, results of biological studies of NO-mediated vasorelaxation are consistent with the idea that RS-NO species can be degraded by RSSH to release NO.
Keywords: Hydrogen sulfide; Hydropersuflides; Nitric oxide; Nitroxyl; S-Nitrosothiols; S-Thiolation; Transnitrosation.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.