Magnetotail Ion Structuring by Kinetic Ballooning-Interchange Instability

Geophys Res Lett. 2022 Feb 16;49(3):e2021GL096796. doi: 10.1029/2021GL096796. Epub 2022 Feb 8.

Abstract

By combining three-probe THEMIS observations and 3-D Particle-in-Cell simulations, we identify key structures on the ion gyroradius scale that occur in connection with ballooning-interchange instability heads in the Earth's magnetotail. The mesoscale structures occur at sites of strong ion velocity shear and vorticity where the thermal ion Larmor radius is about half of the width of the head. Finer structures occur at the smaller scales characterizing the wavelength of the electromagnetic ion cyclotron waves generated at the heads. These two processes act to erode and thin the current sheet, thereby forming a local magnetotail configuration that is favorable for reconnection.

Keywords: ballooning‐interchange; finite Larmor radius effect; ion‐cyclotron waves; magnetotail; plasma sheet; reconnection.

Associated data

  • figshare/10.6084/m9.figshare.16910098.v2