Characterising the spatiotemporal dynamics of drought and wet events in Australia

Sci Total Environ. 2022 Nov 10:846:157480. doi: 10.1016/j.scitotenv.2022.157480. Epub 2022 Jul 20.

Abstract

Global climate change has altered precipitation patterns and disrupted the characteristics of drought and rainfall events. Climate projections confirm that more frequent, intense, and extreme droughts and rainfall events will continue. However, knowledge around how drought and wet events move dynamically through space and time is limited, especially in the southern hemisphere. Australia is the driest inhabited continent, renowned as the land of droughts and flooding rains, but recent climate-driven changes to the severity of wildfires and floods have garnered global attention. Here we used S-TRACK, a novel method for spatial drought tracking, to build pathways for past drought and wet events in Australia to examine their spatiotemporal dynamics. Characteristics such as duration, severity, and intensity were obtained from these pathways, and modified Mann-Kendall tests and Sen's slope were used to detect significant trends in characteristics over time. Drought conditions in southern Australia have intensified, particularly in the southwest of Australia and Tasmania, while the north of the country is experiencing longer, more severe, and more intense wet conditions. We also found that the location of drought and wet hotspots has clearly shifted in response to precipitation changes since the 1970's. Finally, pathways for the most extreme events show peak severity is reached in the middle to late stages of pathways, and that the largest drought and wet areas of a pathway have moved further west in recent times. The findings in this study provide the necessary knowledge to improve preparedness for extreme precipitation events as they become more common and to inform predictions for agricultural output or the extent of other climate events such as wildfires and flooding.

Keywords: Climate adaptation; Climate change; Drought outlooks; Extreme precipitation events; Spatiotemporal pathways.

MeSH terms

  • Agriculture
  • Climate Change*
  • Droughts*
  • Floods
  • Rain